Forecasting software development costs in scrum iterations using ordinary least squares method
Year:
2024Published in:
Technology Center PCDuring scrum iterations, it is possible to apply cost forecasting for software testing and operation, if the data from previous iterations are known. Since the data for estimating the scope of work and the deadline within one sprint are accumulated during the project execution, it is possible to use such data to build a forecasting algorithm for the estimated parameters of the subsequent sprints. The approach is based on refining the assessment provided by the development team and the scrum master in a specific metric. The main parameters for evaluation are the execution time and the amount of work performed. As a result of forecasting, it is possible to obtain clarifications for the team's assessment regarding the scope of work for the next sprint. This estimate is based on planned and actual data from the previous sprints. The article discusses the method of least squares and the proposed code for a machine learning model based on this method. An example and graphs for iterations in scrum and corresponding forecasting for the next sprints are presented. The use of the least squares method allows creating a mathematical model that can be adapted to different project conditions, providing flexibility and accuracy in forecasting. For example, the study uses the real data from the previous sprints, which includes the team's resource assessment and actual expenditures. Based on these data, a model was built that demonstrates a high correlation between predicted and actual costs, confirming the effectiveness of using the least squares method. So, the least squares method is an effective tool for forecasting software development costs in scrum iterations. This method allows development teams to better plan their resources and timelines, contributing to the overall efficiency of the project.
Related by author
12 publications found
The development of an electronic circuit simulation system using variable tabular bases
Publisher: Technology Center PC
Authors: Vadym Yaremenko, Bogdan Bulakh, Yaroslav Kornachevskyy, Oleksandr Beznosyk, Kostyantyn Kharchenko
A comparative analysis of text data classification accuracy and speed using neural networks, Bloom filter and naive Bayes
Publisher: Technology Center PC
Authors: Olena Hryshchenko, Vadym Yaremenko
МОДЕЛЬ МУЛЬТИАГЕНТНОЇ СИСТЕМИ ДЛЯ СЕМАНТИЧНОГО АНАЛІЗУ ТЕКСТІВ
Publisher: Луцький національний технічний університет
Authors: Vadym Yaremenko, Andrii Khudiakov
COMPARATIVE ANALYSIS OF SOFTWARE LIBRARIES FOR THE CLASSIFICATION OF TEXT DATA USING ARTIFICIAL NEURAL NETWORKS
Publisher: Таврійський національний університет ім. В.І. Вернадського
Authors: Vadym Yaremenko, Mykola Tarasenko
Development of a Multi‑Agent System for Solving Domain Dictionary Construction Problem
Publisher: SSRN
Authors: Vadym Yaremenko, Oleksandr Syrotiuk
A theoretically proposed algorithm in a decision tree format for choosing an efficient storage type of large datasets
Publisher: Technology Center PC
Authors: Sofiia Materynska, Vadym Yaremenko, Walery Rogoza
Використання штучних нейронних мереж для визначення наявності сердцево‑судинних хвороб та захворювань печінки при малих наборах даних.
Publisher: Луцький національний технічний університет
Authors: Vadym Yaremenko, Sofiia Materynska
Підхід до використання фільтра блума для багатокласової класифікації текстових даних в режимі реального часу.
Publisher: Technology Center PC
Authors: Vadym Yaremenko, Dmytro Budonnyi
Neural Networks and Monte‑Carlo Method Usage in Multi‑Agent Systems for Sudoku Problem Solving
Publisher: SSRN
Authors: Vadym Yaremenko, Kateryna Poloziuk
Mobile Driving License System Deployment Model With Security Enhancement
Publisher: Theoretical and cryptographic problems of cybersecurity
Authors: Vadym Yaremenko, V. Blynkov