Journal article

Forecasting software development costs in scrum iterations using ordinary least squares method

Year:

2024

Published in:

Technology Center PC
cost forecasting
scrum
machine learning
least squares method
iterations
software development

During scrum iterations, it is possible to apply cost forecasting for software testing and operation, if the data from previous iterations are known. Since the data for estimating the scope of work and the deadline within one sprint are accumulated during the project execution, it is possible to use such data to build a forecasting algorithm for the estimated parameters of the subsequent sprints. The approach is based on refining the assessment provided by the development team and the scrum master in a specific metric. The main parameters for evaluation are the execution time and the amount of work performed. As a result of forecasting, it is possible to obtain clarifications for the team's assessment regarding the scope of work for the next sprint. This estimate is based on planned and actual data from the previous sprints. The article discusses the method of least squares and the proposed code for a machine learning model based on this method. An example and graphs for iterations in scrum and corresponding forecasting for the next sprints are presented. The use of the least squares method allows creating a mathematical model that can be adapted to different project conditions, providing flexibility and accuracy in forecasting. For example, the study uses the real data from the previous sprints, which includes the team's resource assessment and actual expenditures. Based on these data, a model was built that demonstrates a high correlation between predicted and actual costs, confirming the effectiveness of using the least squares method. So, the least squares method is an effective tool for forecasting software development costs in scrum iterations. This method allows development teams to better plan their resources and timelines, contributing to the overall efficiency of the project.

Related by author

12 publications found

2025
Journal article

The development of an electronic circuit simulation system using variable tabular bases

Publisher: Technology Center PC

Authors: Vadym Yaremenko, Bogdan Bulakh, Yaroslav Kornachevskyy, Oleksandr Beznosyk, Kostyantyn Kharchenko

2021
Journal article

A comparative analysis of text data classification accuracy and speed using neural networks, Bloom filter and naive Bayes

Publisher: Technology Center PC

Authors: Olena Hryshchenko, Vadym Yaremenko

2020
Journal article

МОДЕЛЬ МУЛЬТИАГЕНТНОЇ СИСТЕМИ ДЛЯ СЕМАНТИЧНОГО АНАЛІЗУ ТЕКСТІВ

Publisher: Луцький національний технічний університет

Authors: Vadym Yaremenko, Andrii Khudiakov

2019
Journal article

COMPARATIVE ANALYSIS OF SOFTWARE LIBRARIES FOR THE CLASSIFICATION OF TEXT DATA USING ARTIFICIAL NEURAL NETWORKS

Publisher: Таврійський національний університет ім. В.І. Вернадського

Authors: Vadym Yaremenko, Mykola Tarasenko

2020
Working paper

Development of a Multi‑Agent System for Solving Domain Dictionary Construction Problem

Publisher: SSRN

Authors: Vadym Yaremenko, Oleksandr Syrotiuk

2022
Journal article

A theoretically proposed algorithm in a decision tree format for choosing an efficient storage type of large datasets

Publisher: Technology Center PC

Authors: Sofiia Materynska, Vadym Yaremenko, Walery Rogoza

2020
Journal article

Використання штучних нейронних мереж для визначення наявності сердцево‑судинних хвороб та захворювань печінки при малих наборах даних.

Publisher: Луцький національний технічний університет

Authors: Vadym Yaremenko, Sofiia Materynska

2019
Journal article

Підхід до використання фільтра блума для багатокласової класифікації текстових даних в режимі реального часу.

Publisher: Technology Center PC

Authors: Vadym Yaremenko, Dmytro Budonnyi

2021
Working paper

Neural Networks and Monte‑Carlo Method Usage in Multi‑Agent Systems for Sudoku Problem Solving

Publisher: SSRN

Authors: Vadym Yaremenko, Kateryna Poloziuk

2020
Journal article

Mobile Driving License System Deployment Model With Security Enhancement

Publisher: Theoretical and cryptographic problems of cybersecurity

Authors: Vadym Yaremenko, V. Blynkov