Conference proceedings
On Eigenvalues Of Random Partial Wreath Product
Year:
2019Published in:
XII ΠiΠΆΠ½Π°ΡΠΎΠ΄Π½Π° Π°Π»Π³Π΅Π±ΡΠ°ΡΡΠ½Π° ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡiΡ Π² Π£ΠΊΡΠ°ΡΠ½i, ΠΏΡΠΈΡΠ²ΡΡΠ΅Π½Π° 215-ΠΉ ΡiΡΠ½ΠΈΡi Π· Π΄Π½Ρ Π½Π°ΡΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π. ΠΡΠ½ΡΠΊΠΎΠ²ΡΡΠΊΠΎΠ³ΠΎPartial automorhism
wreath product
spectral measure
Partial wreath π-th power of symmetric inverse semigroup βπ is a semigroup defined recursively by π«π = (π«π-1) βπ βπ = {(π,π)|π β βπ,π : dom(π) β π«π-1},π β₯ 2, with composition (π,π) Β· (π, π)=(πππ, ππ), and π«1 = βπ. To a randomly chosen element π₯ β π«π, we assign the matrix π΄π₯ = ( 1{π₯(π£π π )=π£π π } )ππ π,π=1 . In other words, (π, π)-th entry of π΄π₯ is equal to 1 if transformation π₯ maps π to π, and 0 otherwise. Let ππ₯(π) be the characteristic β¦